skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Müller, Christian_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Linking sequence-derived microbial taxa abundances to host (patho-)physiology or habitat characteristics in a reproducible and interpretable manner has remained a formidable challenge for the analysis of microbiome survey data. Here, we introduce a flexible probabilistic modeling framework, VI-MIDAS (variational inference for microbiome survey data analysis), that enables joint estimation of context-dependent drivers and broad patterns of associations of microbial taxon abundances from microbiome survey data. VI-MIDAS comprises mechanisms for direct coupling of taxon abundances with covariates and taxa-specific latent coupling, which can incorporate spatio-temporal information and taxon–taxon interactions. We leverage mean-field variational inference for posterior VI-MIDAS model parameter estimation and illustrate model building and analysis using Tara Ocean Expedition survey data. Using VI-MIDAS’ latent embedding model and tools from network analysis, we show that marine microbial communities can be broadly categorized into five modules, including SAR11-, nitrosopumilus-, and alteromondales-dominated communities, each associated with specific environmental and spatiotemporal signatures. VI-MIDAS also finds evidence for largely positive taxon–taxon associations in SAR11 or Rhodospirillales clades, and negative associations with Alteromonadales and Flavobacteriales classes. Our results indicate that VI-MIDAS provides a powerful integrative statistical analysis framework for discovering broad patterns of associations between microbial taxa and context-specific covariate data from microbiome survey data. 
    more » « less